Breaking News, World News and Taiwan News.

Alaska ice tested as possible new source of methane hydrate

ANCHORAGE, Alaska -- A half mile (800 meters) below the ground at Prudhoe Bay, above the vast oil field that helped trigger construction of the trans-Alaska pipeline, a drill rig has tapped what might one day be the next big energy source.

The U.S. Department of Energy (DOE) and industry partners over two winters drilled into a reservoir of methane hydrate, which looks like ice but burns like a candle if a match warms its molecules. There is little need now for methane, the main ingredient of natural gas. With the boom in production from hydraulic fracturing, the United States is awash in natural gas for the near future and is considering exporting it, but the DOE wants to be ready with methane if there's a need.

“If you wait until you need it, and then you have 20 years of research to do, that's not a good plan,” said Ray Boswell, technology manager for methane hydrates within the DOE's National Energy Technology Laboratory.

The nearly US$29 million science experiment on the North Slope produced 1 million cubic feet (30,000 cubic meters) of methane. Researchers have begun the complex task of analyzing how the reservoir responded to extraction.

Much is unknown but interest has accelerated over the last decade, said Tim Collett, a research geologist for the U.S. Geological Survey in Denver.

U.S. operators in Alaska, he said, may want to harvest methane so they can re-inject it into the ground. Crude oil is more lucrative than natural gas, which is routinely injected into North Slope fields to maintain underground pressure to aid in oil extraction. Japan, South Korea, India and China, however, want to cut down on natural gas imports by burning methane. Japan is setting up for a production test on a gas hydrate accumulation in the Nankai Trough south of Honshu, its main island.

“That will be the first marine gas hydrate test anywhere in the world,” Collett said.

The U.S. Energy Department describes methane hydrate as a lattice of ice that traps methane molecules but does not bind them chemically. They are released when warmed or depressurized.

Methane comes from buried organic matter after it's ingested by bacteria or heated and cooked. The gas migrates upward, under high pressure and low temperature, and can combine with water to form methane hydrate.

Most deposits are below the sea floor off the continental shelf or under permafrost. Shallow pockets of methane hydrate release the potent greenhouse gas into the atmosphere and that process is exacerbated by climate warming.

Write a Comment
CAPTCHA Code Image
Type in image code
Change the code
 Receive China Post promos
 Respond to this email
 What's better: an app or a mobile website? 
In this 2012 photo provided by ConocoPhillips Alaska Inc., a drill rig at Prudhoe Bay on Alaska's North Slope is seen. A half-mile below the ground at Prudhoe Bay, above the vast oil field that helped trigger construction of the trans-Alaska pipeline, a drill rig has tapped what might one day be the next big energy source. (AP)

More Photos (2)
Subscribe  |   Advertise  |   RSS Feed  |   About Us  |   Career  |   Contact Us
Sitemap  |   Top Stories  |   Taiwan  |   China  |   Business  |   Asia  |   World  |   Sports  |   Life  |   Arts & Leisure  |   Health  |   Editorial  |   Commentary
Travel  |   Movies  |   TV Listings  |   Classifieds  |   Bookstore  |   Getting Around  |   Weather  |   Guide Post  |   Student Post  |   Terms of Use  |   Sitemap
  chinapost search